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The concept of a readily releasable pool (RRP) of synaptic vesicles has been used extensively for the analysis
of neurotransmitter release. Traditionally the properties of vesicles in such a pool have been assumed to be
homogeneous, and techniques have been developed to determine pool parameters, such as the size of
the pool and the probability with which a vesicle is released during an action potential. Increasing evidence,
however, indicates that vesicles may be quite heterogeneous with respect to their release probability. The
question, therefore, arises: what do the estimates of pool parameters mean in view of such heterogeneity?
Here, four methods for obtaining pool estimates are reviewed, together with their underlying assumptions.
The consequences of violation of these assumptions are discussed, and how apparent pool sizes are influ-
enced by stimulation strength is explored by simulations.
Introduction
Recent advances in the ultra-structural analysis of active zones

have allowed a greatly improved quantitative understanding of

the relationship between presynaptic Ca2+ influx and neuro-

transmitter release (Herman and Rosenmund, 2015). In partic-

ular, the spatial and functional coupling between voltage-gated

Ca2+ channels (VGCCs) and release-ready vesicles at the active

zone has been a matter of intense interest (Chen et al., 2015; Eg-

germann et al., 2012; Holderith et al., 2012; Indriati et al., 2013;

Keller et al., 2015; Nakamura et al., 2015; Sheng et al., 2012).

An important conclusion of these studies was that the size and

shape of VGCC clusters at active zones are quite variable and

that vesicles should be docked at the perimeter of such clusters,

some distance away (Keller et al., 2015; Nakamura et al., 2015).

Variations in VGCC density and corresponding heterogeneity in

release probability were measured by Sheng et al. (2012), per-

forming cell-attached patch-clamp measurements. Many types

of synapses seem to have variable-size clusters of VGCCs; see

Cano et al. (2013) for review. Furthermore, evidence frommolec-

ular perturbations (Chen et al., 2015; Schlüter et al., 2006; Yang

et al., 2010), from caged Ca2+ measurements (Wölfel et al.,

2007), from minimal stimulation (Dobrunz and Stevens, 1997),

and regarding the effect of modulators of release points to

intrinsic differences between readily releasable vesicles, dubbed

as ‘‘primed’’ and ‘‘superprimed’’ or ‘‘sleepy’’ and ‘‘wakeful’’

(Cano et al., 2012). Correspondingly, it is expected that release

probability of vesicles is not uniform, but depends on the

distance from VGCC clusters, on the number of channels in a

nearby cluster, and on the intrinsic state of the release appa-

ratus. In contrast, commonly used experimental techniques to

determine key parameters of neurotransmitter release, such

as release probability and the size of the RRP (the number of

vesicles), assume homogeneity of the pool or at most two

or three discrete sub-pools (see below). Therefore the meaning

of such estimates is not clear, in spite of the fact that discrete
pool models have been quite successful in the description of

electrophysiological data, both at synapses (Dutta Roy et al.,

2014; Goda and Stevens, 1998) and at neuroendocrine cells

(Stevens et al., 2011). Although Pan and Zucker (2009), analyzing

neurotransmitter release at the crayfish neuromuscular junction,

rightfully concluded that ‘‘it may well be that RRP is a fuzzy

concept, extractable from data, but not rigorously correspond-

ing to any physical vesicle pool,’’ it nevertheless turns out (see

‘‘pros and cons’’ and model simulations below) that such esti-

mates are quite meaningful for the interpretation of changes in

release properties in response to a variety of experimental ma-

nipulations.

It should be pointed out that the ‘‘pool’’ considered here is a

subset of vesicle pools discussed in the context of optical assays

of neurotransmitter release. In the nomenclature of Alabi and

Tsien (2012), it is exclusively the RRP, together with its subdivi-

sions. Pools that supply vesicles to the RRP, such as the so-

called ‘‘recycling pool,’’ are assumed not to be depleted during

the relatively short episodes of stimulation required for esti-

mating the RRP.

The actual situation at a synapse may be characterized by an

(at least) two-dimensional probability function, for a given vesicle

to be released during a given stimulus, p(r,m), where r is some

measure of location or distance of the vesicle with respect to

VGCC clusters and m represents the intrinsic state of the vesicle.

The distance variable is likely to be continuous, while the state

variable may well be discrete, representing defined molecular

states of the release apparatus. The synapse as a whole in this

view is represented at any given time by an ensemble of vesicles

with abundance n(r,m), such that the measured response may be

understood as the integral over the product n(r,m) , p(r,m).

The researcher, studying release, is thus confronted with the

problem of inferring from the overall responses the underlying

distributions. The answer of experimentalists—describing the

system in terms of vesicle pool models—may be seen as either
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disregarding heterogeneity altogether or else as subdividing this

partially continuous space into discrete subsections, with each

sub-pool given its size at a certain moment, its release probabil-

ity, and its rates of vesicle recruitment (priming) and conversion

to other sub-pools. An example for such discretization is the sub-

division of releasable vesicle pools at the Calyx of Held. A total of

about 3,000–5,000 vesicles, which can be released by a step de-

polarization within a few milliseconds (Sakaba and Neher,

2001b; Leão and von Gersdorff, 2009), can be subdivided into

a fast pool and a slow one (Sakaba and Neher, 2001a), which

differ in release rate during a step depolarization by about a fac-

tor of 10.

In a recent study on the nanoscale distribution of presynaptic

Ca2+ channels (Chen et al., 2015), responses to 1 ms and

10 ms step depolarizations were analyzed, which, according to

the discrete pool model, release only the fast or the sum of fast

and slow pools, respectively. In the same study corresponding

release time courses were simulated in a numerical model

involving Ca2+ influx, diffusion, and buffering, as well as the

Ca2+ dependence of release, assuming vesicles with homoge-

neous intrinsic properties. The question was asked: where would

vesicles have to be placedwith respect to VGCCclusters in order

to reproduce theexperimental findings?The resultingdistribution

(number of vesicles versus distance) showed a main peak with

mean distances from the edge of VGCC clusters of 16 nm and

a tail with vesicle distances ranging from30 to 100 nm. This result

was obtained for calyces of older animals (P16–19), while larger

distances had to be postulated for data from younger animals

(P9–11), in agreement with previous conclusions based on

discrete pool models (Fedchyshyn and Wang, 2005; Wang

et al., 2008). A comparison of the simulations with the analysis

of the experimental data in terms of a slow pool and a fast pool

suggests that the fast pool comprises those vesicles that

contribute to the main peak of the distribution, whereas vesicles

of the tail are lumped together as slow ones. The example shows

that pool models may well be able to capture heterogeneities

among vesicle properties and that the differences between

slow and fast pools, as well as their developmental changes,

can be explained on the basis of morphological variations alone

without having to postulate intrinsic differences. This does not

exclude that intrinsic differences contribute. The question re-

mains whether this positive outcome can be generalized, and

which methods are best for estimating pool parameters.

Approaches for Estimating Pool Parameters
As a first step (Part A: Ideal Homogeneity of Pools), techniques of

estimating vesicle pool sizes will be discussed, which make the

assumption that the RRP is homogeneous. All vesicles within

the pool are assumed to have the same release probability. Alter-

natively, the case of their subdivision into not more than two

sub-pools is discussed. Later (Part B: More Realistic Cases),

complications will be discussed for cases in which these as-

sumptions do not hold.

Part A: Ideal Homogeneity of Pools

Pool Size Estimates by Voltage-Clamp Depolarization, Ca2+

Uncaging, and the Application of Hypertonic Sucrose. The

main aim of these methods is to obtain a ‘‘snapshot’’ of the size

of the pool by applying a strong stimulus that empties the pool
1132 Neuron 87, September 23, 2015 ª2015 Elsevier Inc.
rapidly, before any recruitment and release of new vesicles can

happen. Measuring release, either by the increase in membrane

capacitance (Sun andWu, 2001) or by integration of the postsyn-

aptic current (PSC), then supplies a quantity that should be pro-

portional to the pool size, i.e., the number of releasable vesicles

that had been present at the time of the stimulation. Integration of

postsynaptic response may require deconvolution and subse-

quent integration in case accumulation of neurotransmitter or

‘‘spillover’’ between neighboring synapses adds non-linear com-

ponents to the signal (see Sakaba et al., 2002 for review). The

stimulus may be a depolarization to the potential of maximum

Ca2+ influx or flash-photolysis of caged Ca2+, elevating intracel-

lular Ca2+ concentration ([Ca2+]) into the range of 20 mM or

higher. On a much slower timescale, the stepwise application

of hypertonic solution has been used extensively for the study

of glutamate release in hippocampal cultures (Dutta Roy et al.,

2014; Rosenmund and Stevens, 1996). Once the pool size has

been determined, release probability during a PSC is calculated

as the ratio of the recorded response divided by the pool size.

In order to determine the kinetics of release, stimuli have to be

applied in amore definedmanner. Using voltage-clamp depolar-

ization at the Calyx of Held, Sakaba and Neher (2001a) showed

that the cumulative release triggered by such stimuli could be

fitted by two exponentials of about equal amplitude and with

distinct time constants (fast and slow), which differed by about

a factor of 10. This finding points to two vesicle populations of

equal size with differing release rates (Schneggenburger et al.,

2002). In cultured hippocampal neurons, Basu et al. (2007)

applied sucrose in a stepwise manner. Varying the sucrose con-

centration and performing this experiment both in the presence

and absence of the modulator phorbol ester, the authors

observed release with varying time constants, which they inter-

preted in terms of the lowering of the energy barrier for release

by hypertonicity and by phorbol ester.

In the case that the time course of release during application of

the stimulus cannot be resolved, stimuli of varying lengths can be

applied and the time course of release reconstructed by plotting

the increments of the responses during the stimuli against the

lengths of stimuli (Horrigan and Bookman, 1994).

A major problem with all pool-depleting methods is a possible

non-linearity of the release assay.Given the requirement of strong

stimulation for rapid pool depletion, postsynaptic receptors are

likely to be saturated or to undergo desensitization. Both

problems can be counteracted either by recording membrane

capacitance (Sun and Wu, 2001) or, in the case of glutamatergic

synapses, by pharmacologically antagonizing AMPA receptor

desensitization and saturation (Elmslie and Yoshikami, 1985; Ya-

mada and Tang, 1993). Also stimulus strength may be reduced,

which, however, invokes the problem that pool depletion may

notbecomplete, that it is slower, and thatnewly recruitedvesicles

may contribute to the response. The separation of such contribu-

tions from those of the pre-existing vesicles is amajor issue for all

kinds of weaker stimuli, in particular for the more physiological

ones, and will be addressed in the next paragraph.

Pool Size Estimates Using Action Potential-Evoked Trans-

mitter Release. Weaker stimulation, such as afferent fiber

stimulation, is often preferred, since it is more physiological

and applicable to most types of synapses. Although the



Figure 1. Schematic Diagrams of Plots for the Estimation of Vesicle
Pool Sizes
(A) SMN plot and TR plot according to Schneggenburger et al. (1999) and
Thanawala and Regehr (2013). In both plots the cumulative release during a
high-frequency stimulus train is plotted against stimulus number (black solid
line plus dots). A straight line is fitted to the late points of the cumulative trace
(here through points 20–25; broken line). In the SMN plot, the y axis intercept of
this line (lower arrow) is taken as the pool estimate, and the slope of the line is
taken as a measure for the rate of vesicle recruitment. In the TR plot, a
correction is applied to vesicle recruitment according to the argument that new
vesicles can be recruited only after release sites have been vacated (upper
arrow and dotted line, which starts with a shallower slope). In both plots
release probability of the first EPSC is given by the ratio of its value and the
pool estimate.
(B) EQ plot according to Elmqvist and Quastel (1965). Individual responses
within a stimulus train are plotted against the cumulative release, which
occurred before the given stimulus. A straight line is fitted to the early part of
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emptying of the vesicle pools is spread out over a longer time

period, desensitization and saturation may still be a problem (Ta-

schenberger et al., 2005). However, two more problems arise

with weaker stimulation, even when using the highest fre-

quencies of stimulation that a given type of synapse can transmit

reliably. These are:

(1) The stimulusmay be tooweak to deplete thewhole pool in

the presence of ongoing recruitment of new vesicles.

(2) Depletion may take long enough that an appreciable

component of release stems from newly recruited

vesicles.

In the following, these two problems will be discussed in terms

of two classes of approaches, which differ in the way they sepa-

rate the contributions of newly recruited vesicles from those

of the pre-existing RRP. Two slightly different variants are

compared in each case:

Estimating the Contribution of Newly Recruited Vesicles by

Back-Extrapolation. The basis of this method is the assump-

tion that late in a stimulus train the synapse is in a steady state in

which vesicle release is balanced by recruitment of new vesicles

(assumption 1). Thus, the quantal content of late release multi-

plied by the frequency of stimulation is equal to the rate at which

vesicles are recruited. This rate is represented by the slope

of a plot of cumulative EPSCs versus stimulus number (see

Figure 1A).

One of the two variants (Schneggenburger et al., 1999),

referred to as ‘‘SMN plot’’ in the following, makes the further

assumption (assumption 2) that the rate of recruitment is con-

stant throughout the train. This leads to a simple graphical pro-

cedure to determine pool size, namely back-extrapolation of a

linear fit to the late section of the plot (Figure 1A). The y-intercept

of this line fit is then taken as the pool estimate because it is

viewed as the cumulative amount of release minus the release

by newly recruited vesicles. It should be emphasized, however,

that this estimate is not identical to the RRP, which had been

release-ready prior to stimulation. Rather it reports a quantity

very close to the decrement of the pool during stimulation (see

Box 1 for a proof). In order to estimate the entire RRP, one needs

to add those vesicles that prevail at steady state due to a balance

of vesicle release and recruitment. This can be achieved within

the framework of a simple pool model, provided that the release

probability is constant throughout the train or else that the ratio of

release probabilities at beginning and end of the stimulus train

is known (see Box 1). Partial depletion of pools in a dynamic

exchange has been demonstrated by Pan and Zucker (2009).

The second variant replaces assumption 2 (constant rate of

vesicle recruitment) by the assumptions of a classical pool model

with a restricted number of release sites and a fixed rate-con-

stant of vesicle recruitment. The difference is that the actual

rate of vesicle recruitment in terms of vesicles recruited per
the curve, and the x axis intercept is taken as the pool estimate (arrow).
Release probability is given by the negative slope of the line fit.
(C) RBT plot according to Ruiz et al. (2011). The sum of an exponentially de-
caying curve (dotted line) and a suitably chosen function, rising from zero to the
steady-state EPSC value (broken line), is fitted to the measured EPSC values
(circles). The integral of the exponential is taken as the estimate for pool size.
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Box 1. Theory of Cumulative Plots

CUMULATIVE PLOTS REPORT THE DECREMENT IN POOL SIZE, NOT THE ENTIRE POOL

For generality, a reaction scheme is considered in which vesicles can sequentially move between pools P1 and Pm:

/
r0;i

P1;i4
k1

k�1

P2;i4/Pm;i/
releaseð=Pm;i$piÞ

: (Equation 1)

The synapse is assumed to be stimulated repetitively and pool Pm,i to release vesicles at stimulus i with release probability pi
(i=1.n). The ensemble of pools is supplied with new vesicles during the interval following stimulus i with the amount ro,i. (Note:

we use the symbol r and not k because we consider rates of recruitment for this step, not rate constants).

If the filling state of the whole ensemble before stimulation is p0,

p0 =P1;0 +P2;0 +/Pm;0; (Equation 2)

and n stimuli are applied, then pn, the filling state immediately before the last stimulus of the train, is given by

pn =p0 +
X

i = 1/n�1

r0;i �
X

i = 1/n�1

Pm;i � pi: (Equation 3)

The product Pm,I , pi is the measured current yi (neglecting desensitization), such that
X

i =1/n

yi =p0 � pn + yn +
X

i = 1/n�1

r0;i: (Equation 4)

We see here already that the cumulative release Syi, is equal to the combined decrement of the pools considered, plus yn, plus a

term that represents recruitment. The back-extrapolation is an attempt to remove the recruitment term. It is correct if two condi-

tions are fulfilled: (1) r0,i is constant throughout the train (= ro), and (2) the train is long enough that all pools have reached a steady

state. Then the pool contents are constant, and release is balanced by recruitment (r0,i = yi = r0). The late section of a cumulative plot

(Syi, versus stimulus number) is then well approximated by a straight line, and the increments between late points are equal to ro.

Back-extrapolation to I = 0 then subtracts n � 1 times this value, such that the result Pback is

Pback =
X

i = 1/n

yi � ðn� 1Þ,r0 =p0 � pn + yn: (Equation 5)

The theory presented here actually applies to any configuration of sequential and parallel pool states. In that case r0,i, the rates of

recruitment, must be replaced by the sum of recruitment rates to the ensemble of pool states from the ‘‘outside’’ (i.e., from pools

that are not part of the explicitly considered ones). Again, as long as all recruitment and release rates are constant late in a stimulus

train, the cumulative release after subtraction of recruitment is not the sum of all pools considered, but the sum of its decrements

plus yn. In the limit of a graded distribution of release probabilities (infinite number of pools), it is the difference between the initial

distribution of vesicle numbers (n (r, m); see Introduction) and the steady-state one.

CORRECTION FOR INCOMPLETE POOL DEPLETION

For most purposes the decrement in pool content p0 � pn is not the quantity of interest. Rather, one would like to know the full

number of vesicles available before onset of stimulation. For the special case of a single homogeneous pool, a simple correction

can be applied to obtain an estimate for the latter: considering that both y0 and yn are products of a pool size and a release prob-

ability, we can write

y0 =p0,p0 and yn =pn,pn (Equation 6)

and divide the two equations between each other to yield

pn=p0 = yn=y0,p0=pn: (Equation 7)

Together with Equation 5 we obtain

p0 =Pback +pn � yn = ðPback � ynÞ=ð1� yn=y0,p0=pnÞ: (Equation 8)

The ratio yn/y0 is readily measured, whereas p0/pn may need additional assumptions (see text for a discussion). The term yn in the

numerator of Equation 8 may be neglected, which is equivalent to the assumption that there is no recruitment during the first inter-

stimulus interval. Thus, this simplification would partially accommodate the criticism raised against the SMN assumption of con-

stant recruitment.

The required correction Equation 8 may be quite large. For instance, 10–20 Hz stimulation induces short-term depression at the

Calyx of Held down to 40%of control (yn/y0 = 0.4) (Müller et al., 2010). At the same time, these authors found that release probability
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may decrease by a factor of 2 during such stimulation (p0/pn = 2). Inserting these numbers into Equation 8 results in a correction

factor for Pback of 5. This indicates that an SMN plot needs to be interpreted with extreme caution, unless EPSCs depress during

trains to substantially less than 50%.

ELMQUIST-QUASTEL PLOTS LINEARIZE A GEOMETRIC SERIES

In this type of plot, EPSC peak amplitudes yi are plotted against the cumulative amplitudes up to yi-1. For constant release prob-

ability, pi = p, and no refilling pool size decreases during each stimulus by the relative amount of p, such that for a starting pool Po

the amplitudes yn for the n-th EPSC are given by

yn =P0,ð1� pÞn�1,p: (Equation 9)

This is a geometric series, for which

Pn�1

i = 1

yi =P0p
ð1� pÞðn�1Þ � 1

ð1� pÞ � 1

= � P0

�
ð1� pÞðn�1Þ � 1

�
:

(Equation 10)

The quantity yn is plotted against this sum, such that we can write

xn = � P0

�
ð1� pÞðn�1Þ � 1

�
: (Equation 11)

We solve this for ð1� pÞðn�1Þ;

ð1� pÞðn�1Þ = 1� xn
P0

; (Equation 12)

and insert into Equation 9 for i = n

yn =p,ðP0 � xnÞ: (Equation 13)

This is a straight line with x-intercept at Po and a slope of �p. It should be noted that here an EPSC value is plotted against

the sum of previous EPSCs, not including the given EPSC. If the given EPSC is included, then the slope s is �p/(1 � p) or

else p = �s/(1 � s).
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time is not assumed to be constant any longer (assumption 2,

above) but is calculated as the product of a fixed rate-constant

and the number of empty release sites. In other words: pool refill-

ing is assumed to start only after some delay, when sites have

been vacated (Hosoi et al., 2007; Thanawala and Regehr, 2013;

Wang et al., 2013; Wesseling and Lo, 2002). Thanawala and

Regehr (2013) simulated this type of model and concluded that

the simple back-extrapolation (SMN plot) underestimates the

real pool, because it assigns too much of the early release to

newly recruited vesicles. Their simulation results suggest corre-

sponding errors on the 10%–20% level (see Figure 1A). The

postulate that vesicle recruitment starts slowly is well in line

with standard kinetic modeling. However, experimental determi-

nation of recruitment rates at the Calyx of Held showed that

recruitment starts as early as the second and third interstimulus

interval and is relatively constant throughout 100 Hz trains (Lee

et al., 2012). Thus, the error connected to assumption 2 may be

quite small. In contrast, the correction for incomplete pool deple-

tion may be large. In fact, the required correction may well in-

crease the pool estimate several-fold, unless depression in the

stimulus train is >60% (seeBox 1).Wang et al. (2013) find a differ-

ence of a factor of z2 when estimating release probability on

the basis of an SMNplot as compared to that reported by numer-

ical fits with a classical pool depletionmodel. This differencemay

well result mainly from incomplete pool depletion.
Forward Extrapolation of Pool Depletion. This approach

makes the assumption that early in the stimulus train almost all

of release stems from vesicles in the pre-existing pool and the

contribution of newly recruited vesicles is minor. A theoretical

curve (see Figure 1B and below) is therefore fitted to the early

release, and the contribution of newly recruited vesicles is taken

as the difference between the measured late release and the

extrapolation of the fit. We refer to these methods as methods

based on ‘‘forward extrapolation,’’ because the fit is based on

early responses recorded during the stimulus train and the total

release is determined by an extrapolation of that fit to the end of

the train.

Two variants have been proposed for how to do the forward

extrapolation. The first one was published in 1965 by Elmqvist

and Quastel (1965). While studying depression of excitatory

postsynaptic potentials (EPPs) in muscle, these authors

explored the possibility that this form of short-term plasticity

may be due to depletion of available resources. They argued

that, given this hypothesis, it may be helpful to plot EPP size of

a given stimulus against cumulative release prior to that stimulus

(see Figure 1B). We will refer to this method as ‘‘EQ plot’’ in the

following. Using such plots, the authors observed decays, which

were well approximated by line fits, at least for the first few

points. Later points showed more release than predicted by

the line fits. This was interpreted to represent ‘‘mobilization’’ of
Neuron 87, September 23, 2015 ª2015 Elsevier Inc. 1135
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new vesicles during the train. Accordingly, the intercept of the

line fit with the x axis (arrow in Figure 1B) was taken as an esti-

mate for pool size. However, no formal treatment was presented

to show under which conditions or assumptions the intercept

agrees with the size of a pre-existing pool of vesicles.

In practice, a problem of the EQ plot is the choice of the fitting

range. In particular, when synapses show a sequence of facilita-

tion followed by depression, one cannot include the first two or

three data points in the line fit. As a way out, the line is fitted to

the region of steepest descent. This may be a narrow window,

comprising three or four data points. For the case that such a

fit describes the data well between points n1 and n2, the following

two assumptions can lead to a quantitative justification of the

intercept as a valid pool estimate:

(1) There is no release of newly recruited vesicles up to point

n2.

(2) Release probability of old vesicles is constant between

point n1 and the end of the train.

This implies that the only contribution from newly recruited

vesicles is that given by the excess of the EPSCs beyond the

line fit. A formal treatment of these statements is provided in

Box 1. Key to this way of interpreting the method is the insight

that, in the EQ plot, a geometric series is transformed into a

straight line. EPSCs from a pool in which a constant fraction

(release probability) of the remaining vesicles is liberated by

each stimulus follow such a geometric series (the discrete form

of an exponential). Therefore, a line fit starting from any point

along the plot is exactly the prediction for release from a pool

with constant release probability and no recruitment. The x

axis intercept is then the cumulative release for an infinitely

long stimulus train without recruitment, or else the total number

of vesicles that had been present before stimulus onset. Release

probability is given by the negative slope of the plot, as shown in

Box 1.

The second variant of a method based on forward extrapola-

tion was described by Ruiz et al. (2011) for the analysis of

EPPs of mouse muscle (called RBT plot from here on). Here,

EPPs were plotted against stimulus number and an explicit

assumption was made about the contribution of newly recruited

vesicles. This contribution was assumed to start at zero and to

rise with some delay or in a sigmoid manner, asymptotically

covering all late release. The whole time course of release was

fitted by a sum of such a suitably chosen function and an expo-

nentially decaying curve. The integral over the latter one was

assumed to represent the contribution of pre-existing primed

vesicles (see Figure 1C). Various shapes of the former contribu-

tion were explored (exponential rise, exponential after a delay,

sigmoid rise), but as in the case of the QE method, best results

were obtained when a delayed onset of newly recruited release

was chosen. In particular, the authors could show that in this

case the pool estimate agreed closely with estimates for the

number of vesicles docked to the active zones of the neuromus-

cular junctions, as found by electron microscopy.

For both the RBT plot and the QE plot, no correction for resid-

ual pool is necessary due to the conceptual split of release

contributions into a part that represents pre-existing vesicles
1136 Neuron 87, September 23, 2015 ª2015 Elsevier Inc.
(which by definition of a ‘‘releasable’’ pool decays to zero during

prolonged stimulation) and its complement, representing newly

recruited vesicles. In both variants recruitment of release of the

latter is assumed to start late, and it is implied that release prob-

ability for the pre-existing component is constant. In fact, both

methods are formally almost identical, if for the contribution of

slow vesicles in the RBT plot an exponential is chosen with a

delay that matches the endpoint of the fitting interval in the QE

plot.

Summary of Assumptions and ‘‘Technical’’ Problems.

Given the interpretation of methods, as outlined above, there

are two major differences in the underlying assumptions. The

first one relates to the contribution of vesicles that are recruited

and released during the test stimulus. The SMN plot measures

the rate of this contribution as the late slope in a cumulative plot

and assumes that it is constant throughout. The TR plot mea-

sures it the same way, but interprets it as a rate-constant in a

classical pool model. The EQ plot can be interpreted in the

sense that the contribution of newly recruited vesicles is zero

up to the last point included in the linear fit to that plot, and sub-

sequently the difference between measured release and the

linear fit is taken as the contribution of new vesicles. The RBT

plot makes an explicit assumption about the contribution of

new vesicles, as described above. Critical issues regarding

these assumptions are the following: Both SMN- and TR plot

results depend on the assumption that pools are at steady

state in the late phase of stimulus trains. Trains may not be

long enough to reach a truly steady state. Small increases in

release probability or recovery from desensitization may lead

to an apparent steady state, although pool contents are still

declining. Moulder and Mennerick (2005) showed that such

effects may influence pool estimates substantially. Late

changes in release probability are also a major problem for

both EQ and RBT plots, which assume constant release prob-

ability. Constancy of release probability is more likely to hold if

late sections of the trains are considered, calling for a late

placement of the fitting window in EQ plots. This, however, cre-

ates problems with the assumption of no recruitment before the

end of the fitting window.

In both the EQ and the RBT plot, the resulting estimate is the

size of the vesicle pool, which existed at the onset of stimulation.

This is different for the case of the back-extrapolation methods.

Both SMN and TR methods measure the pool decrement during

stimulation, i.e., the difference between the pool size before

stimulation onset and that during stimulation at steady state.

This will result in an underestimate of the pool. Thus, when

comparing results from EQ or RBT plots with those from SMN

and TR plots, any differences not only reflect the different as-

sumptions made, but also the degree of depletion at steady

state, unless incomplete depletion is corrected for.

Contrary to the methods discussed here, which estimate the

number of releasable vesicles, the analysis of current fluctua-

tions, such as by multiple probability analysis (Silver, 2003), re-

ports the number of release sites, N. This may not be equal to

the number of release-ready vesicles, in case not all release sites

are occupied at rest. Partial occupancy of about 70%of sites has

been documented for inhibitory synapses (Trigo et al., 2012).

This may lead to appreciable differences in estimates for both



Table 1. Comparison of Estimates for Release Probability and the

Number of Vesicles/Sites for the Case of Partially Filled Pools

Method

Variance/

Mean SMN/TR

SMN/TR (Plus

Correction) EQ/RBT

No. of

vesicles/sites

N N(pocc,o � pocc,ss) Npocc,o Npocc,o

Release

probability

prel , pocc
a (pocc,o , prel) /

(pocc,o � pocc,ss)

prel prel

It is assumed that there are N release sites, with probability of occupancy

of sites pocc,o (before stimulation) and pocc,ss at steady state during stim-

ulation. Release probability (prel) of a docked vesicle for simplicity is

assumed to be constant. The column Variance/Mean provides values

for multiple probability analysis (Silver, 2003), and the other columns

report those for the various types of plots. The rowRelease Probability re-

ports theoretical predictions from the ratio response over pool estimate.
aMultiple probability analysis requires measurements at a variety of stim-

ulation strengths in order to determine N. Once this value is known, the

product prel , pocc can be determined for a given condition (Scheuss

and Neher, 2001).
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pool size and release probability, depending on themethod used

(see Table 1 for a summary).

Both EQ and RBT plots may overestimate pools, if substantial

recruitment of new vesicles occurs in the early part of the stim-

ulus train. This was pointed out by Thanawala and Regehr

(2013), concluding that estimates from SMN and EQ plots are

lower and upper boundaries for the true value of the RRP. How-

ever, when they compared results from TR plots with those from

EQ plots, there was very close agreement, suggesting that the

respective errors are small. EQ plots may also underestimate

late contributions of RRP vesicles, if release probability de-

creases during the train, such that these vesicles release slower

than predicted by the fit to the early data points and conse-

quently are counted as newly recruited vesicles (see also below).

Last but not least, as pointed out byWesseling and Lo (2002) and

Stevens andWilliams (2007), pool estimates, which are based on

peak amplitudes of EPSCs, underestimate the number of quanta

released if these are not perfectly synchronized or if substantial

asynchronous release occurs. The analysis of charge (current in-

tegral) may circumvent this problem, unless determination of the

baseline for the integration poses a new problem.

A summary of problems and recommendations can be found

in Table 2. But, as will become evident below, errors associated

with such problems seem to be minor relative to the large varia-
Table 2. ‘‘Technical’’ Problems and Recommendations

Be aware of the assumptions and make sure they apply to your synapse.

Don’t use back-extrapolation (SMN and TR plots) if the depression is less t

Use correction for residual pool (SMN and TR plots only), unless depressio

Aim at a compromise between speed of pool depletion and desensitization

Be aware that the apparent pool (or ‘‘accessible pool’’) varies with stimulati

(e.g., 4 mM external [Ca2+]).

When studying changes in pool size, aim at a constant release probability,

When studying effects on release probability, interpret them with respect to

Be aware that estimates based on peak amplitudes of EPSCs underestima

synchronized. Analyze charge (current integral), if possible.
tions in pool estimates with stimulus strength, which are

observed if vesicle pools are not homogeneous.

Part B: More Realistic Cases

Depletable Pool and Graded Pool. The main conclusions

drawn above are strictly valid only if the vesicle pools under

study are homogeneous. The problems discussed so far can

be viewed as ‘‘technical problems’’ connected to the way pool

estimates are obtained. In reality, however, as outlined in the

Introduction, the pool concept is an idealization for a distribution

of vesicle properties, which may have one or several peaks (cor-

responding to one or several vesicle populations) or may be

graded without distinct features. The question arises whether

the pool concept is still useful in this case.

Inhomogeneous release probability violates the assumption

about exponential decay of the release of RRP vesicles. If

some of the vesicles have release probability higher than that

of others, they will fuse earlier in a stimulus train, leaving behind

vesicles with lower release probability. The fit in the EQ plot will

report the higher release probability of fast vesicles and a good

portion of the slower vesicles will be held to be newly recruited

ones, leading to an underestimation of the RRP—partially

compensating for the overestimate due to misassigned, newly

recruited vesicles early in the train. Likewise, vesicles with

much lower release probability will be released late in a train

and may be mistaken in an SMN plot as newly recruited ones

(see simulation below). Such vesicles are likely to reside at larger

distances from channel clusters and may contribute even more,

if the domain of elevated [Ca2+] spreads during stimulus trains,

affecting more and more remote vesicles. In addition to such

‘‘pseudo-recruitment,’’ synapses that can transmit in a sustained

fashion must be equipped with ‘‘real recruitment,’’ i.e., recycling

of vesicles and refilling of release sites. Thus, increases in

pool size estimates with increasing strength of stimulation may

signal either a higher degree of depletion of amore or less homo-

geneous pool or else the release of vesicles with lower release

probability, which release during strong stimulation, but would

not do so within the duration of a weaker stimulus (see also

Moulder and Mennerick [2005] for the case of sucrose stimula-

tion).

Dependence of Apparent Pool Size on Stimulus Strength.

At the Calyx of Held, differences in estimated pool size of almost

a factor of two, depending on stimulation strength, were re-

ported by Lou et al. (2008). To describe such changes, Wölfel

et al. (2007) introduced the concept of ‘‘submaximal release.’’
han 60%.

n is more than 90%.

/saturation; use kynurenic acid to mitigate such problems.

on strength. Use stimulation somewhat stronger than ‘‘physiological’’

maybe by adjusting [Ca2+].

changes observed by changing [Ca2+].

te the quantal content, unless evoked quanta are perfectly
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Figure 2. Simulation of Release from an Inhomogeneous Vesicle
Pool
(A) Pool parameters as a function of distance between vesicles and a VGCC
cluster: A distribution similar to that of Chen et al. (2015) was assumed (see
Figure 3 for a graphical representation). The solid box-like trace shows vesicle
numbers per nanometer before onset of stimulation (right ordinate). The thin
smooth line is the release probability (left ordinate). It was calculated as prel = 1/
(1+(const , r/ICa)

3.7), where r is the distance from a Ca2+ channel cluster and ICa
is the Ca2+ current, which was assumed to be constant during a given stimulus
train. The thin dotted curve shows the vesicle distribution after the first EPSC,
and the broken line does so for the situation after the last stimulus. The first
stimulus releases predominantly fast vesicles (at distances between 10 and
19 nm), while the whole stimulus train depletes most of the fast pool and also
releases vesicles in the distance range 20–40 nm. Here the ratio const/ICa was
chosen such that 200 vesicles were released during the first stimulus.
No recruitment was assumed. Marginal distance, r0, for this run was 15.6 nm
(see below).
(B) Release as a function of stimulus number (from the same simulation as in A).
Gray circles are responses to individual stimuli (right ordinate), black dots
(solid trace, left ordinate) are cumulative values, and the broken line is an

1138 Neuron 87, September 23, 2015 ª2015 Elsevier Inc.
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More recently, Thanawala and Regehr (2013) addressed this

problem in an extensive study, in which they varied Ca2+ influx

by several methods. This led to changes in the estimates for

release probability and pool sizes using both cumulative plots

and EQ plots. To discuss the observed changes, they introduced

the term ‘‘effective pool size’’ and concluded that the Ca2+

dependence of release is only partially caused by changes in

release probability, an appreciable part being due to changes

in effective pool size.

According to the analysis presented here (Box 1), part of the

differences in SMN pool size estimates is due to incomplete

pool depletion and the question arises whether the correction

for incomplete pool depletion should be applied to the ‘‘effective

pool.’’ Although this question is amatter of interpretation, there is

a good reason that it should be applied in the case of cumulative

plots (SMN and TR plots) and also to the ‘‘submaximal release,’’

since it would be required in such plots for obtaining the correct

result, even if the underlying pool were an ideally homogeneous

one (see also discussion below).

How do changes in apparent pool size with stimulus strength

relate to vesicle properties, if the latter are not homogeneous?

Intuitively one would expect that increasing stimulation strength

will release more and more vesicles, even if these have below-

average release probability. A simulation of such a scenario is

shown in Figure 2. Here it was assumed that vesicles are distrib-

utedwith respect to channel clusters in a way similar to what was

postulated by Chen et al. (2015)—a ‘‘fast pool’’ of 1,500 vesicles

at 10–19 nm and a ‘‘slow pool’’ of 1,500 vesicles at 20–100 nm

(see Figure 3 for a graphical representation). It had been shown

before that afferent fiber stimulation releases predominantly

vesicles from the fast pool, with slow vesicles contributing very

little (Sakaba, 2006). Thus, one would expect that pool estimates

from standard plots report values close to those of the fast pool,

if action potential-evoked release is studied. The simulation was

performed in order to test this expectation.

It was assumed that local [Ca2+] drops with the inverse of

distance from a channel cluster, that it is proportional to ICa,

and that release probability during an action potential is

given by a Hill function of local [Ca2+] with an exponent of 3.7
SMN-fit to the last six points of the cumulative plot. The back-extrapolation
yields an estimate for the pool size, which is 1,007 vesicles. The correction for
residual pool (Equation 8, Box 1, assuming p0/pn = 1) is small, since depression
of the responses is large (92%). This simulation does not assume any
recruitment of vesicles. A very similar simulation including recruitment is given
in Figure 1A (note different y scale).
(C) Pool estimates as a function of stimulus strength. Simulations were per-
formed, as shown in (B), but including recruitment of vesicles to the fast pool at
a rate of 3.3 pools/s. Values for const/ICa (see above) were chosen such that
release probability for a given run had the value of 0.0773 at a given ‘‘marginal’’
distance r0. Release probability as a function of distance (right ordinate) is
plotted for a few examples of r0 (10, 20, 30, 40, 60, 80, 100 nm). For one case
(r0 = 60), the calculation of r0 is illustrated as the intersection of the trace for
release probability with the horizontal dashed line at a y value of 0.0773. Both
corrected (large dots) and uncorrected (broken line) estimates for pool size are
plotted against r0. In addition, the cumulative number of vesicles up to a given
distance is plotted (left ordinate) as a function of distance from the VGCC
cluster. The uncorrected estimates for pool size seem to be almost identical to
corrected ones at the resolution of the display. It should be pointed out,
though, that relative differences between corrected and uncorrected values
are 30%–50% in the steep region of the traces and that the assumed
recruitment rate is relatively small.



Figure 3. Graphical Representation of the Simulation
A cluster of five VGCCs is assumed to be surrounded by ‘‘fast’’ vesicles at a
certain perimeter. Some more ‘‘slow’’ vesicles are spread at larger distances.
Local calcium concentration during an action potential ([Ca2+]) is assumed (for
simplicity) to decay inversely with distance. Release probability (p-release)
decays as a power function of the latter. The strength of stimulation, as drawn,
is such that p-release reaches the marginal value (0.0773) at a radius (marginal
distance) that includes most of the fast vesicles. According to the simulation
(see text), these vesicles, but not slow ones, would show up in the pool esti-
mate of an SMN plot. For stronger stimulation (larger [Ca2+] and p-release), the
marginal distance would be larger, and more vesicles would be included in the
pool estimate. The drawing shows more vesicles per VGCC clusters than are
actually present at the Calyx of Held, for better visualization of the vesicle
distribution.
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(see Figure 2 legend for details). For Figures 2A and 2B, Ca2+ cur-

rent was adjusted, such that 200 out of the 1,500 vesicles of the

fast pool were released during the first action potential in a high-

frequency stimulus train, as observed experimentally for stan-

dard conditions (Taschenberger et al., 2005). Figure 2A shows

the release probability (thin, smooth curve) and the vesicle den-

sity describing this inhomogeneous pool before onset of stimu-

lation (solid line), after the first stimulus (thin dotted line), and

after the 25th stimulus (broken line), all as functions of distance

from the VGCC cluster. No refilling of pools was assumed to

take place for this first simulation. The figure shows that the first

stimulus releases predominantly vesicles from the fast pool

(at 10–19 nm distance). After the 25th stimulus, the fast pool is

almost completely depleted, but the first few bins of the slow

pool are also affected. Upon performing an SMN plot, it turns

out that the late section of such a plot can quite well be fitted

by a straight line (Figure 2B), suggesting a pool of 1,007 vesicles

and an apparent recruitment rate of 1.86 pools/s, although no

recruitment was included in this first run of the model. This result

demonstrates that vesicles with lower release probability can

show up in the cumulative plot as if they were newly recruited.
The pool estimate is about two thirds of the fast pool. The correc-

tion for incomplete depletion, as suggested in Box 1, has little

effect, since the steady-state value is very low in the absence

of recruitment. Adding recruitment into the fast pool at a rate

of 3.3 pools/s (assuming 100Hz stimulation) did not lead tomajor

changes in the SMN result (1,025 vesicles), if the correction for

residual pool was applied. This shows that the back-extrapola-

tion method successfully corrected for ‘‘real’’ recruitment. The

EQ plot (not shown) with a line fit on the first three data points

reported a pool of 1,158 vesicles without recruitment and

1,441 vesicles including recruitment. Thus, both methods in

the absence of recruitment come up with estimates, which are

smaller than the fast pool, since part of the fast pool is interpreted

as recruitment. The EQ estimate (1,441 vesicles) is surprisingly

precise in the presence of recruitment. The reason is a compen-

sation of this underestimation by including newly recruited vesi-

cles early in the train in the pool estimate.

The simulations shown so far were performed assuming

relatively weak stimulation, and therefore vesicles at longer

distances from VGCC clusters did not release during stimulus

trains. It has been the general experience that stronger stimula-

tion leads to more robust and larger pool estimates. Figure 2C

therefore explores how pool size estimates change if stimulation

strength is varied. Here, as in Figure 2A, release probability was

calculated as a function of distance from a VGCC cluster, but

now for various ICa values. SMN plots were performed and the

resulting pool estimates plotted against the distance at which

release probability for the given ICa value was 0.07732. This value

is indicated as a horizontal dashed line in Figure 2C. The partic-

ular position (asmarked for one example as a dotted vertical line)

was chosen because the total probability for a vesicle at that

location to be released up to the onset of the linear fit (the 20th

stimulus) amounts to 0.8 (= 1� (1� 0.07732)20). It was expected

that most of the vesicles at distances shorter than this ‘‘marginal

distance,’’ which have release probability higher than that of the

‘‘marginal vesicles,’’ will be released early in the train. More

distant ones may not be released or else be mistaken as newly

recruited vesicles. Therefore the pool estimate should be close

to cumulative numbers of vesicles up to the marginal ones.

This was, indeed, found. The closed symbols in Figure 2C are

pool estimates plotted against the location of marginal vesicles

(see legend for details). They closely agree with the cumulative

vesicle density function of Figure 2A, as it was assumed for the

modeling (continuous line ‘‘Model’’ in Figure 2C).

This simulation shows that the apparent pool varies strongly

with stimulation strength and that it can in principle recover the

essential features of a heterogeneous vesicle distribution. It

should be pointed out, though, that the simulations as presented

here span a more than 10-fold range in assumed Ca2+ current,

which is hard to obtain experimentally. It has been shown that

physiological stimulation in the Calyx of Held can release not

muchmore than the fast pool (Sakaba, 2006), which in this simu-

lation corresponds to the 1,500 vesicles up to 20 nm. This is

confirmed in Figure 2C, where 1,530 vesicles are estimated for

a marginal distance of 20 nm. Increasing Ca2+ current 1.5-fold,

corresponding to an increase in the marginal distance from

20 to 30 nm, increases release, but only by 19%. In order to tap

the remainder of the slowpool,much larger currents are required,
Neuron 87, September 23, 2015 ª2015 Elsevier Inc. 1139
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which cannot readily be obtained with action potential-like stim-

ulation. Prolonged depolarization under voltage clamp or else

Ca2+ uncaging, however, will be able to release these vesicles

(Sun and Wu, 2001). Nevertheless, there is a plateau region

covering the range of stimulus strength just above that typically

used for electrophysiological experiments in which the pool

estimate is close to the fast pool (see also discussion of ‘‘pros’’

and ‘‘cons’’ below). Decreasing stimulation strength, however,

leads to dramatic reduction in the apparent pool size. Thus, the

modeling suggests that within certain limits of stimulus strength,

the pool estimates are relatively robust (see below for

a comparison with experimental data). It should be stressed,

though, that the mapping of the distance scale (x axis in Figures

2Aand2C) onto ‘‘real’’ distancesmaybequite complex, involving

realistic modeling of Ca2+ spread in the nanodomain and

the sensitivity of the release apparatus, as determined by caged

Ca2+ experiments. Any intrinsic heterogeneity of vesicles will

require evenmore complexity, involving the two-dimensional dis-

tribution n(r,m), asdiscussed in the Introduction. Likewise, hetero-

geneity with respect to priming would need extra attention.

The simulation also implies that it is not straightforward to

assay changes in pool size with certain manipulations (molecular

or pharmacological) if these also influence release probability.

Compensation of the latter by adjustment of Ca2+ concentration

may be necessary to isolate the effect on pool size, or else

apparent changes in pool size need to be probed at maximal

stimulation strength (caged Ca2+; voltage step depolarization,

high sucrose). Likewise, changes in release probability, induced

by some agent, may be distorted by changes in apparent pool

size. Again, compensation of such effects by ‘‘titration’’ with

[Ca2+] may be advisable, resulting in a relative potency of a given

agent with respect to [Ca2+] changes.

Summary and Perspective
Ideally, the researcher would like to study the properties of a

given release site: the release probability of a docked and primed

vesicle, how it changes with stimulus strength, and how such

properties are distributed among the population of vesicles,

which are release-ready at a given time. The common analysis

tools used to determine such parameters can only give cumula-

tive numbers and averages over pools of vesicles, which may be

quite heterogeneous. There are experimental manipulations to

better define the pool or a sub-pool of interest, such as inclusion

of EGTA in the intracellular medium, which acts by limiting the

extent of Ca2+ microdomains. Also, there are experimental

means to mitigate possible errors due to release of newly re-

cruited vesicles, such as inclusion of calmodulin blockers (Sa-

kaba and Neher, 2001a) or else latrunculin (Lee et al., 2012),

which slow down recruitment of such vesicles. In any case,

however, one should be aware of the assumptions made in a

particular type of analysis, likely problems related to those (see

Table 2), and to the fact that ‘‘readily releasable pool’’ means

‘‘vesicles releasable by a given type of stimulus.’’

With this in mind, we may consider the ‘‘pros’’ and ‘‘cons’’ of

pool estimates with respect to three themes:

(1) Dependence on Stimulus Strength. The ‘‘contra’’ defi-

nitely centers around the notion (Pan and Zucker, 2009)
1140 Neuron 87, September 23, 2015 ª2015 Elsevier Inc.
that ‘‘RRP is a fuzzy concept . not rigorously corre-

sponding to any physical vesicle pool.’’ In the Calyx of

Held, this leads to the situation that pool estimates based

on strong stimulation (by flash-photolysis of caged Ca2+

or else using step depolarization) are in the range of

4,000–6,000 vesicles (Sun and Wu, 2001; Leão and von

Gersdorff, 2009), which is up to 4–6 times higher than es-

timates based on SMN plots using fiber stimulation

(Schneggenburger et al., 2002). Part of this discrepancy

may be due to the fact that the former values were ob-

tained using membrane capacitance as an assay, which

is not subject to desensitization. Another factor of two

probably reflects the finding that fiber stimulation releases

only the fast pool, whereas stronger stimulation releases

all primed vesicles. Restricting the analysis to fiber stimu-

lation, changes in synaptic strength with experimental

manipulations may well be broken down into changes in

release probability and those of pool size, if variations in

stimulation strength are confined to a certain range. A

recent study at the Calyx of Held (Thanawala and Regehr,

2013) demonstrated large decreases in effective pool size

when lowering stimulation strength by various means, but

it also showed that such changes are confined to the

10%–20% level if Ca2+ influx is increased or decreased

by less than 50% around a reference value obtained

with 2 mM external [Ca2+]. Thus, given the steep depen-

dence of release on Ca2+ influx, there is a relatively wide

range of synaptic responses within which release can

be manipulated without major changes in the pool

estimate. The simulation of Figure 2C also shows that

above a marginal distance of 20 nm, a 50% increase in

ICa leads to about 20% increase. This is similar, but some-

what more than what was found experimentally at the

Calyx, which may mean that the difference between

slow and fast vesicles is indeed more pronounced in

reality than assumed in the model. Variation of the model

distribution with the aim of more accurately reproducing

the experimental dependence of the RRP estimate upon

stimulus strength may be an interesting exercise to

learn more about the relative sensitivity of slow and fast

vesicles.

(2) The Sucrose Pool. A major concern (con) of this method

is the ignorance about the mechanism by which applica-

tion of hypertonic solution causes release. However, it is

quite likely that sucrose application releases all primed

vesicles, not only those in close proximity to Ca2+ chan-

nels. In fact, Moulder and Mennerick, 2005 concluded

that ‘‘reluctant’’ vesicles may contribute to the sucrose

pool (but see Stevens and Williams, 2007). As a conse-

quence, estimates of release probability calculated on

the basis of sucrose pools are typically very low and

not consistent with the rapid decay of EPSCs during

high-frequency stimulus trains. Nevertheless, normaliza-

tion of EPSCs measured in hippocampal cultures with

respect to the sucrose pool of a given neuron has been

very helpful in numerous studies employing molecular

or pharmacological manipulations of neurotransmitter

release. As a ‘‘pro’’ of the method, it should also be



Neuron

Perspective
stated that it is independent of [Ca2+] changes and thus

eliminates influences of a number of Ca2+-dependent

processes and that it normalizes with respect to cell

size, number of synapses, etc. Also, constancy of the

sucrose pool may well imply constancy of the pool rele-

vant for evoked release, since the latter quite likely is a

sub-pool of the former.

(3) The Debate on Vesicle Recruitment. A problem (con) of

all methods discussed is the correction for newly re-

cruited vesicles. As a ‘‘pro’’ it should be stated that it is

clearly established that recruitment during stimulus trains,

as measured by the slope of SMN or TR plot, is much

higher than recruitment at rest or during recovery from

short-term depression. However, it is a matter of debate

how fast recruitment sets in after onset of stimulation.

As discussed above, evidence has been provided that it

may set in faster than compatible with simple pool

models. On the other hand, RTB plots provided best

agreement between pool estimates and the number of

morphologically docked vesicles under the assumption

of a delayed onset of vesicle recruitment. More detailed

studies of these aspects may reveal features of vesicle

docking and priming, which go beyond a simple one-

step reaction.

Irrespective of the pros and cons of pool models, the simula-

tion of Figure 2C suggests a likely scenario of why pools are het-

erogeneous and how this translates into varying pool estimates.

Given the steep dependence of release probability upon dis-

tance from Ca2+ sources (see Figure 2C and more detailed

modeling in Nakamura et al., 2015) and assuming that local

[Ca2+] is the major determinant of release probability, one may

view the RRP as the sum of all those vesicles located within a

certain radius from a Ca2+ source for which release probability

is higher than about 0.08, the exact value of this probability de-

pending on the number of stimuli preceding those EPSCs on

which the back-extrapolation is based. As shown in Figure 2C,

increases in stimulus strength, which enlarge this radius, may

then be related to the increasing number of vesicles docked

within this larger radius. Systematic experiments of this type,

together with models of the spread of Ca2+ microdomains and

the Ca2+ dependence of the release apparatus, may in the end

provide an idea about the way how vesicles are distributed

around clusters of VGCCs at the active zone.
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